;
This course gets your hands on to some real live Twitter data, simulated streams of Apache access logs, and even data used to train machine learning models! You'll write and run real Spark Streaming jobs right at home on your own PC, and toward the end of the course, we'll show you how to take those jobs to a real Hadoop cluster and run them in a production environment too.Spark and Scala
Intellipaat is a prominent e-learning institute in Hyderabad widely known for its most sought-after Apache Spark and Scala Training Course. As part of this Spark training classes the learners will be getting complete knowledge about these two advanced technologies and their concepts like RDD, Spark SQL, fundamentals of Scala programming and much more.
Introducing Scala and deployment of Scala for Big Data applications and Apache Spark analytics
The importance of Scala, the concept of REPL (Read Evaluate Print Loop), deep dive into Scala pattern matching, type interface, higher order function, currying, traits, application space and Scala for data analysis.
Learning about the Scala Interpreter, static object timer in Scala, testing String equality in Scala, Implicit classes in Scala, the concept of currying in Scala, various classes in Scala, the concept of currying in Scala, various classes in Scala. of multiple traits extending.
Introduction to Scala collections, classification of collections, the difference between Iterator, and Iterable in Scala, example of list sequence in Scala.
The two types of collections in Scala, Mutable and Immutable collections, understanding lists and arrays in Scala, the list buffer and array buffer, Queue in Scala, double-ended queue Deque, Stacks, Sets, Maps, Tuples in Scala.
Introduction to Scala packages and imports, the selective imports, the Scala test classes, introduction to JUnit test class, JUnit interface via JUnit 3 suite for Scala test, packaging of Scala applications in Directory Structure, example of Spark Split and Spark Scala.
Introduction to Spark, how Spark overcomes the drawbacks of working MapReduce, understanding in-memory MapReduce,interactive operations on MapReduce, Spark stack, fine vs. coarse grained update, Spark stack,SparkHadoop YARN, HDFS Revision, YARN Revision, the overview of Spark and how it is better Hadoop, deploying Spark without Hadoop,Spark history server, Cloudera distribution.
Spark installation guide,Spark configuration, memory management, executor memory vs. driver memory, working with Spark Shell, the concept of Resilient Distributed Datasets (RDD), learning to do functional programming in Spark, the architecture of Spark.
Spark RDD, creating RDDs, RDD partitioning, operations & transformation in RDD,Deep dive into Spark RDDs, the RDD general operations, a read-only partitioned collection of records, using the concept of RDD for faster and efficient data processing,RDD action for Collect, Count, Collectsmap, Saveastextfiles, pair RDD functions.
Understanding the concept of Key-Value pair in RDDs, learning how Spark makes MapReduce operations faster, various operations of RDD,MapReduce interactive operations, fine & coarse grained update, Spark stack.
Comparing the Spark applications with Spark Shell, creating a Spark application using Scala or Java, deploying a Spark application,Scala built application,creation of mutable list, set & set operations, list, tuple, concatenating list, creating application using SBT,deploying application using Maven,the web user interface of Spark application, a real world example of Spark and configuring of Spark.
Learning about Spark parallel processing, deploying on a cluster, introduction to Spark partitions, file-based partitioning of RDDs, understanding of HDFS and data locality, mastering the technique of parallel operations,comparing repartition & coalesce, RDD actions.
The execution flow in Spark, Understanding the RDD persistence overview,Spark execution flow & Spark terminology, distribution shared memory vs. RDD, RDD limitations, Spark shell arguments,distributed persistence, RDD lineage,Key/Value pair for sorting implicit conversion like CountByKey, ReduceByKey, SortByKey, AggregataeByKey.
Spark Streaming Architecture, Writing streaming program coding, processing of spark stream,processing Spark Discretized Stream (DStream), the context of Spark Streaming, streaming transformation, Flume Spark streaming, request count and Dstream, multi batch operation, sliding window operations and advanced data sources. Different Algorithms, the concept of iterative algorithm in Spark, analyzing with Spark graph processing, introduction to K-Means and machine learning, various variables in Spark like shared variables, broadcast variables, learning about accumulators.
Introduction to various variables in Spark like shared variables, broadcast variables, learning about accumulators, the common performance issues and troubleshooting the performance problems.
Learning about Spark SQL, the context of SQL in Spark for providing structured data processing, JSON support in Spark SQL, working with XML data, parquet files, creating HiveContext, writing Data Frame to Hive, reading JDBC files, understanding the Data Frames in Spark, creating Data Frames, manual inferring of schema, working with CSV files, reading JDBC tables, Data Frame to JDBC, user defined functions in Spark SQL, shared variable and accumulators, learning to query and transform data in Data Frames, how Data Frame provides the benefit of both Spark RDD and Spark SQL, deploying Hive on Spark as the execution engine.
Learning about the scheduling and partitioning in Spark,hash partition, range partition, scheduling within and around applications, static partitioning, dynamic sharing, fair scheduling,Map partition with index, the Zip, GroupByKey, Spark master high availability, standby Masters with Zookeeper, Single Node Recovery With Local File System, High Order Functions.
will be introduced to the Spark Machine Learning Library, a guide to MLlib algorithms and coding which is a machine learning library. Understand how to deploy collaborative filtering, clustering, regression, and dimensionality reduction in MLlib. Upon completion of the project you will gain experience in working with streaming data, sampling, testing and statistics.
Topics – With this project you will learn to integrate Twitter API for analyzing tweets. You will write codes on the server side using any of the scripting languages like PHP, Ruby or Python, for requesting the Twitter API and get the results in JSON format. You will then read the results and perform various operations like aggregation, filtering and parsing as per the need to come up with tweet analysis.
Topics – This project lets you work with Spark SQL. You will gain experience in working with Spark SQL for combining it with ETL applications, real time analysis of data, performing batch analysis, deploying machine learning, creating visualizations and processing of graphs.
The training which I undergone was manual testing. I have learnt a lot and the training was good. I have learnt the basics too. Now I am able to do a project on my own with the help of knowledge I have gained from Blend Infotech.
Complete Real time and best training in pune for Manual Testing.The trainer is vast experienced and MNC Expert. I am thankful to Blend Infotech simply great training center in Pune for Manual Testing.
Friends if you want to learn Anything in Information Technology Blend is the best place which I can suggest. His training is really in Practical Manner, I got Placement after finishing my course there. Thanks for your Real time Training. Thanks to Blend Infotech also.
I did manual Java in Blend InfoTech staff is very kind in teaching part and also supporting in intimating openings for job.class is good in easy understanding the concept in very clear.
I have attended manual testing training. The faculty was very good and he explained all the concepts of manual testing with real time scenario. I also got support in developing my own Project. They taking care of the students for placements.Overall experience in Blend Infotech is very good.
1st Floor, Deccan Corner,
Opp. R-Deccan Mall/ KFC,
Near Deccan Bus stop
J.M Road, Deccan,
Shivaji Nagar, Pune- 04.
Office: 020-48618772,
Cell: 8087088772
7/1 Shreeyash Building,
Opp. Akurdi Railway Station,
Dharmaraj Chowk.
Nigdi (Akurdi) Pune-44
Mob: 8793008772